
The localisation transition in a dissipative two-state system: a squeezed state approach

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1990 J. Phys.: Condens. Matter 2 3119

(http://iopscience.iop.org/0953-8984/2/13/021)

Download details:

IP Address: 171.66.16.103

The article was downloaded on 11/05/2010 at 05:50

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0953-8984/2/13
http://iopscience.iop.org/0953-8984
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys.: Condens. Matter 2 (1990) 3119-3123. Printed in the UK 
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Shenyang, People’s Republic of China 
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Abstract. A displaced squeezed state is used as the variational ground state of a spin-boson 
Hamiltonian describing the interaction of a two-state system with a phonon bath. The phase 
diagram for localisation in the ohmic dissipation is obtained by a method based on the self- 
consistent calculation of the effective tunnelling splitting. A comparison with the results of 
the usual displaced state approximation and the renormalisation group theory is also given. 

The spin-boson Hamiltonian 

has been used to simulate many physical situations with various backgrounds, e.g., 
dissipative macroscopic tunnelling in a SQUID [ 11 and atomic tunnelling states in solids 
[2-4]. Abundant physics can be exhibited from the Hamiltonian (l), ranging from 
damped oscillation up to localisation. Apparently the low frequency modes of the bath 
play a crucial role and may modify the motion of the two-state system. The conventional 
weak coupling picture is then driven into a rather limited region of validity. On the 
other hand, the adiabatic approximation exaggerates this point and overestimates the 
occurrence of infrared divergence. In fact, using the renormalisation-group procedure, 
Chakravarty [ 5 ] ,  and Bray and Moore [6] have shown that for the ohmic dissipation and 
at zero temperature, increasing the dissipation strength triggers a sharp localisation 
transition. It is believed that such a transition is the result of the infrared divergence 
induced by the low frequency modes of the bath. Therefore it is important to find a 
correct description of the ground state of the bath, especially for the low frequency part. 
Unfortunately, we know little as yet about the ground state of the bath under coupling 
with a two-state system. The adiabatic approximation ascribes the displaced oscillator 
of the Glauber coherent state as the ground state, leading invariably to localisation for 
the ohmic case and completely suppressing the occurrence of the transition. 

It is clear that the coupling with a two-state system has two different effects on the 
ground state of the bath: displacement and deformation. The failure of the Glauber 
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coherent state description arises from the fact that it only takes account of the former 
and omits the latter [7]. In [SI we have proposed a displaced squeezed state 

as a variational ground state of the Hamiltonian ( l ) ,  where qvac denotes the vacuum 
state for the bath and the symmetric state for the two-state system (oxqVac = qvac). This 
displaced squeezed state includes both displacement and deformation effects induced 
by coupling with a two-state system. It is easy to verify that the whole system is more 
stable in the displaced squeezed state than in the Glauber coherent state. The intention 
of the present letter is to explore the influence of this new ground state on the condition 
necessary for the occurrence of localisation transitions. 

Minimising the ground state energy of the whole system 

leads to the equation for Y k :  

e 8 Y k  = 1 + 8AogiK/w2 (4) 

( 5 )  

where the phonon overlapping integral K satisfies 

-In K = E (2gi/cu:) e - 4 Y k  = E (2g;/wi)(1 + 8AOgiK/cui)-1/2. 
k k 

The effective tunnelling frequency is Aeff  = AoK; therefore the localisation occurs as K 
vanishes. We see that Y k  tends to infinity as k* 0 for non-zero K. Its effect is just to 
alleviate the infrared divergency appearing in the Glauber coherent state through the 
second factor in the right hand side of ( 5 )  , and to drive the occurrence of the localisation 
into the appropriate region in the parameter space. For mathematical simplicity, we 
adopt the power law for both coupling strength g k  and frequency m k  up to the cut-off 
value in momentum space: 

where kis reduced against the cut-off momentum; hence 0 < k < 1. In the d-dimensional 
space these reduce ( 5 )  to [9] 

g k = gOkA O k  = W o k v  (6) 

+ 1, -4) (7) 
1 A - v / 2 + d  A - ~ / 2 + d  

3v-2A ' 3 ~ - 2 A  K 
- - - gi (!)'I2 F(?, 

CO; A - u/2 + d K 
where A = ~: /8Aog;  and F(a, b ,  c ;  2) is the hypergeometric function. We assume 
2A < 3v to ensure Y k  tends to zero at a high frequency limit (high frequency modes are 
harmless to the adiabatic picture). The asymptotic behaviour of F(a, b ,  c ;  2 )  for large z 
depends crucially on the value of b(= (A - v/2 + d)/(3v - 2A)) [9]: 

Hence there is always a non-zero K when b > 2, and for b < 2, K = 0 is the only solution 
of (7) except when A is unusually small. For the current notation 

(A/K) ' /*F - C1 + C2(K/A)b-112. (8) 

g i  - I w s  dcu 
k 

we notice s = (d + 2A)/v - 1. Then b = (d + v)/[d + (2 - s )u ]  - 2 is an increasing 



Letter to the Editor 3121 

K lorge K small 

Figure 1. The phase diagram for the localisation- 
delocalisation transition. The shaded area rep- 
resents the delocalisationphase and the unshaded 
area the localisation phase. The full curves rep- 
resent the stable points with constant K and the 
broken curves are associated with the saddle 

1 a points. 

function of s. The parameter b larger (or less) than f corresponds to s larger (or less) 
than 1. In the literature these two situations are referred to as superohmic and subohmic 
respectively [ 11. 

The marginal ohmic case b = 4 (s = 1) is the most fascinating, as the integral in (7)  
then becomes elementary: 

-In K = (&/4w;)[ln(l + dl + A-'K) - 111-1. (9) 
In obtaining (9) we have chosen the boson bath as a three-dimensional acoustic phonon 
bath, namely with d = 3, v = 1. Introducing the dimensionless dissipation strength a = 
d / 4 ,  with 

equation (9) can be rewritten as 

(11) K("- 1)/2a = A 1/2 + ( A  + K) 1/2 

with A = oo/l6Aoa. For a < 1, equation (11) always possesses a solution K > 0. The 
situation is somewhat complicated for a > 1: when A > 4, K = 0 is the only solution, 
while for A < 4, two non-zero K-values arise. Detailed analysis of the stability shows 
that the larger K corresponds to the energy minimum, while the smaller K corresponds 
to a saddle point. It is convenient to represent these results in the (oo/Ao)-a plane. In 
figure 1, the shaded area possesses a stable non-zero K, while the unshaded area 
corresponds to localisation with K = 0 the only solution. The boundary describing the 
localisation-delocalisation transition consists of two parts: one is the line a = 1 from 
oo /Ao  = 4 upwards; the other, for a > 1, is the envelope of the family of curves with a 
constant value of Kin  ( l l ) ,  i.e. 

oo /Ao = 16a(& - l )"-*/(a  + l )@+' .  (12) 
In the literature the cut-off frequency oo is usually considered to be very large [l] ,  

and all the results referred to are in the lowest order of Ao/wo; thus the transition occurs 
at a = 1, corresponding to the straight line in figure 1. From the spin-boson Hamiltonian 
one sees that in the strong coupling or small tunnelling limit, the ground state becomes 
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degenerate suggesting the localisation of the spin in one of the spin states (up or down); 
therefore large a and small A. (scaled against the cut-off oo) favours localisation. In 
other words, for smaller wo/Ao, the transition should occur at somewhat larger a. To 
our knowledge, until now there has been no operative scheme appropriate to the small 
cut-off limit (Ao/wo > 1) of the present problem. A related problem of a particle in a 
periodic potential with quasiparticle dissipation has been studied by Guinea and Schon 
[lo]. In many cases, this problem is equivalent to the ohmic dissipative two-level system 
considered in the present paper. For the small cut-off limit (wo/Ao tends to zero), they 
found that the critical coupling approaches infinity-it is easy to see that (12) has the 
same asymptotic behaviour. They indicated that the critical coupling depends linearly 
on Ao/oo for the large cut-off limit (wo/Ao > 1). Our critical line follows a similar 
behaviour, although it smoothly approaches the point a = 1, wo/Ao = 4from below and 
then becomes a vertical line. When Ao/wo < a, our results coincide with those of others 
[l]: witheffective tunnelling Aeff = Ao(4aAo/wo)*~(1-*)for a < 1 and Aeff = Ofor a > 1, 
except that a should be replaced by a’ defined in (10). 

We want to emphasise that our theory shows that the localisation will take place at 
larger critical coupling where a’ = 4 instead of a’ = 1 as in the previous studies. This is 
the crucial point of the present study. In the following, we would like to deliberate a 
little more over the possible origin of the difference between a and a’. Leggett et a1 have 
suggested [ll] that the localisation transition condition given by the renormalisation- 
group procedure can be obtained from an iterative process on the basis of the Glauber 
coherent state. Alternatively, Hewson and News [12], and Zwerger [13] used a vari- 
ational ground state 

\ k / 

to minimise the energy 

with 

They thus got precisely the same phase diagram for localisation in the ohmic case as 
they did by using the renormalisation-group procedure for Ao/wo < 1, namely K’ = 
(2eAo/w0)a’/(1-*’) for a’ < 1 and K‘ = 0 for a’ > 1. It is interesting to compare the 
energies of these two different approaches. Combining (4), (6) and (15), (3) and (14) 
(Ao/wo < 1) we obtain 

E ,  = -AoK(l - a) E ;  = -hoK’(l  - a’). (17) 

It can be shown from (17) that there exists a characteristic value a: with 0 < ac c3 1, 
leading to EL s E ,  for a’ < a: ; E; > E ,  for 4 > a’ > a:. In order to get a quantitative 
feeling for a:, we choose Ao/wo = 0.1 which gives a: = 0.04, and E ; / E ,  = 1.004 for 
a’ = 0.01; E ; / E ,  = 0.04for a’ = 0.8. Thismeans that our displacedsqueezed trialstate 
is more stable in the regime 4 > a’ > a:. We believe that our description of the transition 
is preferable at least in the view of the ground state energy. In fact, the ratio a’/areflects 
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the difference between two kinds of infrared divergence in the neighbourhood of the 
transition points, namely 

- a’ = lim{ (2 2g2 2)/[z%(1+8AogzK)1’2]} = 4  (18) 
K+O k (wk +2AoK) k @k 0: 

leading to different Frank-Condon factors. It is worthwhile noticing that the known 
results for the renormalisation-group procedure are obtained mainly on the assumption 
of a dilute instanton gas or dilute flip gas. Recently, in the study of dissipative tunnelling 
out of a metastable state, Zwerger pointed out the possibility that condensation of an 
instanton gas may cause the breakdown of the dilute gas approximation [14]. 

In conclusion, we have developed a non-renormalisation-group theory to investigate 
the localisation transition in a dissipative two-state system. The main feature of the 
theory is the introduction of a displaced squeezed state as the ground state of the spin- 
boson model, which is more stable than the Glauber coherent state. The influence of 
this new ground state on the localisation transition has been studied in detail for the 
ohmicdissipationcase. We find that the transitiondependson wo/Aoandon thecoupling. 
For coupling smaller than a critical value, the system is in the delocalisation phase and 
is independent of oO/Ao .  However, when the coupling becomes larger than the critical 
value, the system can be either in the localisation phase or in the delocalisation phase, 
depending on the value of wo/Ao. The important difference between this and previous 
work is that our critical line for a large wo/AO limit is located at alarger coupling strength. 

The authors are grateful to H Zheng, W G Feng and M L Zhou for stimulating discus- 
sions. This research was supported by CNSF for Young Scientists through Grant No 
0187703 and by CNSF through Grant No 1870744. 
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